二氧化氯发生器在工业循环水灭藻中的应用
目前,循环冷却水系统倾向于采用碱性**磷系配方作为水质稳定剂,这就为菌藻的繁殖提供了营养源,细菌、真菌、藻类、原生动物等微生物利用水中的营养物质大量繁殖。以这些微生物为主体,混杂泥砂、无机物和尘土等,形成生物粘泥附着与堆积,因而产生粘泥故障,引起设备、管道的局部腐蚀、堵塞等不良问题,降低换热器的热交换效率,甚至使管道穿孔,设备损坏。因此,必须在循环冷却水中投加杀生剂,以控制微生物的生长。
在许多特殊的情况下,二氧化氯更有优势、更有效、更经济。例如:当冷却水具有较高的pH值、含氮量和**物含量时,二氧化氯的优势就显得尤为**。因为二氧化氯的杀菌效果受环境pH值的影响较小,它可在较宽的pH值范围内保持稳定的杀菌作用。二氧化氯不会与氨反应生成杀菌效力低的氯胺,而且它与**物反应性低,不易被水中的**物消耗,不会形成氨化**物。另外,二氧化氯的杀菌速度快,在水中的衰败期长,药效持久,且二氧化氯不与**磷等水质稳定剂发生沉淀反应,对水质稳定剂的缓蚀阻垢作用没有影响。二氧化氯对金属设备腐蚀实验表明:70~110 mg/L的二氧化氯对不锈钢和铜基本无腐蚀,20~70mg/L的二氧化氯对碳钢基本无腐蚀,所以二氧化氯在循环水中的杀菌浓度低于80mg/L,不会对设备造成腐蚀。
投加量的一般控制:
投加量可分为两部分:一部分是为了杀灭细菌除藻类、蚤类、氧
化**物等而消耗的量,这部分和原水水质情况有关,另一部分是剩余量,是为了满足水在管网中有持续杀菌能力,现国标规定出口不低于0.1mg/l,但在夏季应相应提高。在夏季水温高时二氧化氯在水中衰减散失的比较快,但不宜过高如果**过0.5mg/l,水在加热时产生异味(崔福义)并增加出水厂水的色度,增加亚氯酸盐、氯酸盐含量。应多点投加充分发挥二氧化氯在低浓度时灭活性**的特点。1、 因二氧化氯具有遇光分解的特性,如果沉淀池 滤池的采光条件较好,应在投加二氧化氯时在沉淀池和滤池增加避光设施,否则将会出现以下情况:
① 二氧化氯遇光分解,使二氧化氯不能充发挥作用,并分解产生亚氯酸盐 、氯酸盐。
ClO2+ H2O =ClO2- + ClO3+2H+
② 在反应池和沉淀池的过渡段、滤池(恒水位工作)滞水区存在藻、蚤类的二次繁殖问题。(二氧氯因自身分解及遇光分解,滞水区二氧氯浓度很低,藻、蚤类具有趋光性,为二次繁殖提供有利条件。)(夏季在斜板和滤池排水槽及池壁生长藻细胞成层的黏物质,形成一层润滑层,影响感官效果和水质,主要原因也是光。)
③ 由于光照强度的不同使沉淀池,滤池出口余ClO2变化较大,必将影响清水池出口余ClO2的稳定性。
2、 二次投加后的水,在清水池不宜储存时间过长。二氧化氯静态衰减结果表明,二氧化氯浓度降低的大部分(50%--60%)发生在与水接触的10min内,在与水接触10min后的1天内,二氧化氯浓度降低了20%--40%。实际在清水池的衰减速度更快。3、 沉淀池和滤池的负荷不易过低,防止二氧化氯自身挥发和分解。
六、ClO2的无机副产物的产生主要途径:
(1) 、在用ClO2净化饮用水时,大约有50%~70%参与反应的ClO2转化为ClO2—和ClO3—并残留在水中。
(2)、 在光和热的作用下也会产生ClO2—和ClO3— 。
(3)、 ClO2 的强氧化性在与水中的某些还原物质反应而形成ClO2— 。
(4)、 ClO2在碱性介质中也会发生酸化反应,生成ClO2—和ClO3—。
(5)、 化学法产生二氧化氯的过程中,由反应条件的限制可造成不完全反应和非定量投加,将会导制产物中ClO2—和ClO3— 的增加。
七、如何较大限度减少无机副产物量:
(1)、若用氯酸盐法,可设法提高反应原料的转换效率,探求反应的较佳浓度、酸度、温度、压力。
(2)、要做好水源保护工作,提高二氧化氯应用工序之前处理工艺的效率,较大程度地降低水体与二氧化氯投加量以及**和无机副产物的生成量。
(3)、在二氧化氯应用工艺阶段注意适量投加二氧化氯在满足氧化和消毒要求的情况下,尽量减少二氧化氯的残余量,并且不要使二氧化氯暴露在阳光下而分解,同时注意水体的pH 值等条件,充分发挥二氧化氯的氧化能力。
八、亚氯酸盐的去除技术:
在净水工艺中去除亚氯酸盐的应用技术,基本上都是氧化还原法,还原法包括硫化物,亚铁和活性炭吸附等还原产物为Cl—
氧化法有臭氧氧化等氧化产物为氯酸性。