催化燃烧设备技术的工作原理是什么?
主要是借助催化剂使**废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热。
1)起燃温度低,反应速率快,节省能源。催化燃烧过程中,催化剂起到降低VOCs分子与氧分子反应的活化能,改变反应途径的作用。
2)处理效率高,二次污染物和温室气体排放量少。采用催化燃烧处理VOCs废气的净化率通常在95%以上,终产物主要为CO2和H2O。由于催化燃烧温度低,大量减少NOx的生成。燃料消耗排放的CO2量在总CO2排放量中占很大比例,能源消耗量减少,显然减少了温室气体CO2排放量。
3)适用范围广,催化燃烧几乎可以处理所有的烃类**废气及恶臭气体,适合处理的VOCs浓度范围广。对于低浓度、大流量、多组分而无回收价值的VOCs废气,采用催化燃烧法处理是经济合理的。
什么是空速?影响空速的因素有哪些?
在VOCs催化燃烧系统中,反应空速通常指体积空速(GHSV),体现出催化剂的处理能力:反应空速是指规定的条件下,单位时间单位体积催化剂处理的气体量,单位为m³/(m³催化剂•h),可简化为h-1。例如产品标注空速30000h-1:代表每立方催化剂每小时能处理30000m³废气。空速体现出催化剂的VOCs处理能力,因此和催化剂的性能息息相关。
气体燃烧后,气体体积膨胀对空速的影响?
稳定运行状态下,气体体积膨胀对空速影响不大,因为一般而言VOCs含量不高,仅仅这部分气体的膨胀,体积流量的增加很少。
纳米级催化剂的优势?
纳米催化剂是指催化剂的有效成分(比如贵金属)以纳米的尺度分散在载体上,催化剂的有效成分尽可能多地暴露在气体中,使两者的接触机会大大增加,这样的催化剂一般性能更为优越。
起燃温度和完全转化温度的定义,以及与废气浓度的关系?
起燃温度:净化率达到10%所需要的温度
完全转换温度:净化率>98%所需要的温度
催化燃烧一经点起燃将在很短时间内达到高温,而废气的浓度达到一定程度后,其反应放热可实现自热催化反应。
催化剂的堆码方式?
在压降允许的范围内,催化剂应按照“高瘦型”方式堆放,高径比应大于1.5。否则靠器壁的催化剂的利用率会较低,影响整体催化剂床层的催化效果。孔道与气体流向一致,保持一定孔道长度,各段催化块应错开摆放,四边与反应器炉壁接触部位应采用钢骨架折边或采用耐高温材料密封防止废气漏通。
催化燃烧产品优势:
一、设施完备,设有阻火器、泄压孔、温度传感报警器、自动喷淋系统及氮气保护系统等 措施。
二、可用于净化处理连续或间歇生产产生的**废气。
三、设备运行全自动控制,操作简易。
四、该设备性能稳定、操作简便、节能低耗、 可靠、**次污染。
五、催化燃烧室采用陶瓷蜂窝体的贵金催化剂,低温氧化分解,催化燃烧净化率优良。
六、采用新型的活性炭吸附材料,反复解析 ,使用期限达8000h。